102 research outputs found

    Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    Get PDF
    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread

    Synthetic blends of volatile, phytopathogen-induced odorants can be used to manipulate vector behavior

    Get PDF
    Volatile organic compounds (VOCs) are emitted from all plants and these VOCs are important means of communication between plants and insects. It has been documented that pathogen infections alter VOC profiles rendering infected plants more attractive to specific vectors transmitting these pathogens than uninfected plants, thus potentially aiding in pathogen propagation. Mimicking these chemical cues might enable insect attraction away from the plant or disruption of host finding behavior of the vector. However, the practical implications have not been fully explored. We used citrus, Diaphorina citri and huanglongbing (HLB) as a model host-vector-disease system because HLB threatens citrus production worldwide and is similar to other critical diseases of food crops, such as Zebra Chip affecting potato. We formulated a synthetic chemical blend using selected HLB-specific biomarker compounds, and tested the blend with the Attenu assay system for chemosensory proteins. The Attenu assay system is a procedure that identifies interactions between insect chemosensory proteins and their ligands. We found that an equimolar mixture of compounds mimicking the volatile profile of HLB-infected citrus bound chemosensory proteins. Further investigation of this blend in laboratory behavioral assays resulted in development of a synthetic lure that was more attractive to D. citri than natural citrus tree volatiles. This strategy could provide a new route to produce chemical lures for vector population control for a variety of plant and/or animal systems and it may result in the development of a practical lure for monitoring vectors of disease, such as D. citri

    Temporal Decline in Pathogen-Mediated Release of Methyl Salicylate Associated With Decreasing Vector Preference for Infected Over Uninfected Plants

    Get PDF
    The Asian citrus psyllid, Diaphorina citri Kuwayama, is the vector of the phytopathogenic bacterium, Candidatus Liberibacter asiaticus (CLas), that causes citrus greening. Diaphorina citri is attracted to methyl salicylate (MeSA) emitted by CLas-infected citrus. MeSA is catalyzed from salicylic acid (SA) by salicylic acid methyl transferase (SAMT). In addition, salicylate hydroxylase, an enzyme that degrades SA and suppresses host plant defense, is unregulated in CLas-infected as compared with uninfected citrus. Based on these findings, we hypothesized that CLas-induced plant volatile emissions and SAMT expression may decrease over time following CLas infection. We first identified the putative Citrus sinensis SAMT (CsSAMT) that methylates SA to MeSA. Thereafter we compared changes in SAMT expression and volatile expression between uninfected citrus, citrus recently (< 6 months) infected with CLas, and citrus infected with CLas for a long (>1 year) duration. Emission of MeSA increased in citrus recently infected with CLas, whereas both MeSA emissions and SAMT expression decreased in long-infected citrus as compared with uninfected controls. Also, there was a significant decrease in release of limonene from citrus infected >1 year, and a concomitant increase in release of β-caryophyllene in both recent and long-infected citrus as compared with controls. In behavioral assays, D. citri preferred settling on asymptomatic citrus recently infected with CLas over uninfected or long-infected citrus trees. The odor of citrus recently infected with CLas was more attractive to D. citri than the odor of uninfected or long-infected citrus. There was an association between the preference for citrus odor of recently infected plants and an increase of MeSA release following CLas infection. Overall, our study demonstrated pulsed changes in citrus odor release following CLas infection. We hypothesize that allocation of resources to plant defense in citrus decreases as a function of huanglongbing disease symptom progression. These changes affected the behavior of the CLas vector. Our study confirms previous reports demonstrating that plant defenses boosted following phytopatogen infection tend to decrease over time. Implications on the CLas epidemic are discussed

    Host Selection, Oviposition and Feeding by a Phytopathogen Vector, Diaphorina citri (Hemiptera: Liviidae), Modulated by Plant Exposure to Formic Acid

    Get PDF
    Citrus volatiles and their breakdown products, such as formic and acetic acids, guide host finding by Asian citrus psyllids (Diaphorina citri). Formic acid elicits psyllid antennal responses and stimulates probing. This study investigated how exposure to vapor phase formic acid induced changes in plant volatile emissions, expression of plant defense genes, and modified psyllid host finding and feeding behaviors on susceptible and resistant citrus cultivars. Chemical analyses of headspace volatiles and behavioral assays were performed before and after exposure of D. citri susceptible and resistant plants to vapor phase formic acid. RT-qPCR elucidated changes in plant defense-associated gene expression following exposure. Electrical Penetration Graph (EPG) measured D. citri feeding behavior on citrus with and without exposure to formic acid. Volatilized formic acid caused a 200–500% increase in release of citrus volatiles 1–3 h after exposure, increased attraction of D. citri to Poncirus trifoliata (resistant) and increased oviposition compared with controls. RT-qPCR showed significant increases in expression of WRKY22, GST1, RAR1, and EDS1 genes following exposure that also reduced phloem, but not xylem, ingestion by adult D. citri. Formic acid exposure caused increased citrus volatile release that modified host finding and feeding behaviors of an important phytopathogen vector

    Sexual Transmission of a Plant Pathogenic Bacterium, Candidatus Liberibacter asiaticus, between Conspecific Insect Vectors during Mating

    Get PDF
    Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). The bacterium is the presumed causal agent of huanglongbing (HLB), one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4%) during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees

    Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles

    Get PDF
    We provide an overview of both traditional and innovative control tools for management of three Xylosandrus ambrosia beetles (Coleoptera: Curculionidae: Scolytinae), invasive species with a history of damage in forests, nurseries, orchards and urban areas. Xylosandrus compactus, X. crassiusculus and X. germanus are native to Asia, and currently established in several countries around the globe. Adult females bore galleries into the plant xylem inoculating mutualistic ambrosia fungi that serve as food source for the developing progeny. Tunneling activity results in chewed wood extrusion from entry holes, sap outflow, foliage wilting followed by canopy dieback, and branch and trunk necrosis. Maintaining plant health by reducing physiological stress is the first recommendation for long-term control. Baited traps, ethanol-treated bolts, trap logs and trap trees of selected species can be used to monitor Xylosandrus species. Conventional pest control methods are mostly ineffective against Xylosandrus beetles because of the pests’ broad host range and rapid spread. Due to challenges with conventional control, more innovative control approaches are being tested, such as the optimization of the push–pull strategy based on specific attractant and repellent combinations, or the use of insecticide-treated netting. Biological control based on the release of entomopathogenic and mycoparasitic fungi, as well as the use of antagonistic bacteria, has yielded promising results. However, these technologies still require validation in real field conditions. Overall, we suggest that management efforts should primarily focus on reducing plant stress and potentially be combined with a multi-faceted approach for controlling Xylosandrus damage

    Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats

    Get PDF
    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9-12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests.info:eu-repo/semantics/publishedVersio

    Ecological Aspects of the Vector-Borne Bacterial Disease, Citrus Greening (Huanglongbing): Dispersal and Host Use by Asian Citrus Psyllid, Diaphorina Citri Kuwayama

    No full text
    Determining the influence of abiotic and biotic factors on pest dispersal behavior is a critical component of integrated pest management. The behavioral and physiological traits of movement of the Asian Citrus Psyllid (ACP), Diaphorina citri Kuwayama, has received significant attention. Field and laboratory experiments have explored the physiological capabilities of ACP dispersal, as well as, the abiotic and biotic drivers that initiate movement behavior. Abiotic factors such as temperature, barometric pressure, humidity, landscape, and orchard architecture, as well as, biotic factors including mating status, pathogen infection, and morphotype have been investigated in great detail. The current review focuses on dispersal of ACP with the goal of synthesizing current knowledge to suggest management tactics. Overall, vision serves as the primary modality for host finding in ACP. Current data suggest that ACP populations increase more within uniform landscapes of seedling trees, as compared to mature orchards with randomly interspersed young seedlings. The data also suggest that establishment and conservation of visual and physical barriers might be beneficial to protect orchards from ACP. Management of ACP must take into account large-area cooperation, orchard border surveillance and treatment, removal of non-crop habitat, and an understanding that immigration can occur from distances of several kilometers
    • …
    corecore